\(\left\{{}\begin{matrix}u_1=\dfrac{1}{2}\\q=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow S=\dfrac{1}{2}.\dfrac{1}{1+\dfrac{1}{2}}=\dfrac{1}{3}\)
\(\left\{{}\begin{matrix}u_1=\dfrac{1}{2}\\q=-\dfrac{1}{2}\end{matrix}\right.\Rightarrow S=\dfrac{1}{2}.\dfrac{1}{1+\dfrac{1}{2}}=\dfrac{1}{3}\)
Tính tổng các cấp số nhân lùi vô hạn \(1;-\dfrac{1}{2};\dfrac{1}{4};-\dfrac{1}{8};.....;\left(-\dfrac{1}{2}\right)^{n-1}\)
tính tổng cấp số nhân lùi vô hạn sau: \(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...\)
tìm gioi hạn \(lim\left(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{2^{n-1}}\right)\)
Tính giới hạn sau lim\(\dfrac{1+\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{3}\right)^n}{1+\dfrac{2}{5}+\left(\dfrac{2}{5}\right)^2+...+\left(\dfrac{2}{5}\right)^n}\)
Tính \(\lim\left(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{16}+...+\dfrac{1}{n^2}\right)\).
Sử dụng những kiến thức tính đến bài "Bài 1: Giới hạn của dãy số". Giải thích chi tiết bước làm.
tính giới hạn \(lim\left(1-\dfrac{1}{2^3}\right)\left(1-\dfrac{1}{3^3}\right).........\left(1-\dfrac{1}{n^3}\right)\)
a,CMR :dãy u(n)=\(\left(1+\dfrac{1}{n}\right)^n\)có giới hạ hữu hạn
b đặt lim(1+\(\dfrac{1}{n}\))^n =e .Tính các giưới hạn sau ; lim\(\left(\dfrac{n+1}{n-1}\right)^{n+2}\)và lim\(\left(\dfrac{n-2}{n+3}\right)^{n+1}\)
giới hạn \(lim\dfrac{1-2+4-...+\left(-2\right)^{n-1}}{1-3+9-...+\left(-3\right)^{n-1}}=\dfrac{4\left[1-\left(-2\right)^n\right]}{3\left[1-\left(-3\right)^n\right]}\) bằng?