Ta có:
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1-\dfrac{1}{50}\)
\(\Rightarrow A=\dfrac{49}{50}\)
Vậy \(A=\dfrac{49}{50}.\)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=1-\dfrac{1}{50}=\dfrac{49}{50}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(A=\frac{49}{50}\)
Ta có:
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-...-\dfrac{1}{49}-\dfrac{1}{49}+\dfrac{1}{50}\)
\(A=1-\dfrac{1}{50}\)
\(\Rightarrow A=\dfrac{49}{50}\)
*tích cho mình với nha*
A=1/1*2+1/2*3+1/3*4+...+1/49*50
=1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50
=1-1/50
=0,98
A=1-\(\dfrac{1}{2}+.....+\dfrac{1}{49}-\dfrac{1}{50}\)=1-\(\dfrac{1}{50}=\dfrac{49}{50}\)
mk làm vậy thôi