Đặt \(u=\ln\left(x^2-x\right)\rightarrow du=\frac{2x-1}{x^2-x}dx,dv=dx\rightarrow v=x\)
Do đó : \(I=x.\ln\left(x^2-x\right)|^3_2-\int\limits^3_2\frac{x\left(2x-1\right)}{x\left(x-1\right)}dx=3\ln6-2\ln2-\int\limits^3_2\frac{2x-2+1}{x-1}dx\)
\(=\ln54-2\int\limits^3_2dx\frac{d\left(x-1\right)}{x-1}=\ln54-2-\ln\left(x-1\right)|^3_2=3\ln3-2\)