\(\int_0^1x\sqrt{1-x}dx\)
Tính tích phân sau: \(\int_0^1\frac{x^4-2x^3-4x^2+x-2}{x^2-2x-3}dx\)
\(\int_0^{\sqrt{7}}\dfrac{x^3}{\sqrt[3]{x^2+1}}dx\)
\(\int_1^6\dfrac{\sqrt{x+3}+1}{x+2}dx\)
Tính các tích phân sau:
I = \(\int\limits_0^1x\sqrt{1-x^2}dx\)
\(\int_0^1\left(X^2.SINX^3+\frac{\sqrt{X}}{1+X}\right)dx\)
cho f(x) dương liên tục trên [0;1] f(0)=1. Biết \(3\int_0^1\left[f'\left(x\right)\left[f\left(x\right)\right]^2+\frac{1}{9}\right]dx\le2\int_0^1\sqrt{f'\left(x\right)}f\left(x\right)dx\) . Tính \(\int_0^1\left[f\left(x\right)\right]^3dx\)
Câu 1. Cho hàm số chẵn y=f (x) liên tục trên R và \(\int\limits^1_{-1}\dfrac{f\left(2x\right)}{1+2^x}dx=8\).Tính \(\int_0^2f\left(x\right)dx\)
Câu 2:Cho hàm số y=f (x) có đạo hàm và liên tục trên [0;1]và thỏa f(0)=1.\(\int_0^1\left[f'\left(x\right)\left[f^2\left(x\right)\right]+1\right]dx=2\int_0^1\sqrt{f'\left(x\right)}f\left(x\right)dx\).Tính\(\int_0^1\left[f^3\left(x\right)\right]dx\).
Tính tích phân sau:
\(I=\int_0^{\pi}\dfrac{x.sinx}{sin^2x+3}dx\)
Cho hàm số f(x) xác định và liên tục trên [0;1], thỏa mãn f'(x)=f'(1-x) với mọi x thuộc [0;1]. Biết rằng f(0)=1; f(1)=41. Tính tích phân I=\(\int_0^1f\left(x\right)dx\)