Diện tích
\(S=\int\limits^{\frac{\pi}{6}}_0sinxdx=-cosx|^{\frac{\pi}{6}}_0=1-\frac{\sqrt{3}}{2}\)
Diện tích
\(S=\int\limits^{\frac{\pi}{6}}_0sinxdx=-cosx|^{\frac{\pi}{6}}_0=1-\frac{\sqrt{3}}{2}\)
Câu 1:Tính diện tích hình phẳng giới hạn bởi các đường sau :y=0,y=x²-4x+3
Câu 2: Tính thể tích vật thể tròn xoay sinh ra bởi hình phẳng giới hạn bởi các đường cong y=tanx và y=0,x=0,x=π/4 khi nó quay quanh trục
Tính diện tích hình phẳng giới hạn bởi các đường sau :y=3x;y=x²+2
Tính diện tích hình phẳng giới hạn bởi các đường sau y=3x;y=x²+2
1.Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có diên tích bằng 18.Gọi E là trung điểm của BC.Đường tròn ngoại tiếp tam giác CDE cắt đường chéo AC tại G (G không trùng C).Biết E(1;-1), G(2/5;4/5) và điểm D thuộc đường thẳng d:x+y-6=0. Tìm tọa độ các điểm A,B,C,D.
2.Cho hình chóp s.abc có đáy ABC là tam giác đều cạnh a, tam giác SAB vuông cân tại đỉnh S và nằm trong mặt phẳng vuông góc với mặt đáy.Tính thể tích khối chóp S.ABC và khoảng cách giữa 2 đường thẳng SB và AC theo a.
3.Giải hệ phương trình
\(\begin{cases}\sqrt{3-x}+\sqrt{y+1}=x^{3^{ }}\\x^{3^{ }}-y^{3^{ }}+12x-3y=3y^{2^{ }}-6x^{2^{^{ }}}-7\end{cases}\)
trong mặt phẳng với hệ trục tọa đọ oxy, cho tam giác ABC có phương trình đường cao kẽ từ A, đường phân giác trong kẽ từ C, trung tuyến kẽ từ B lần lượ là d1: 3x - 4y + 27= 0; d2: x +2y-5=0; d3:4x+5y-3=0. Tìm tọa dộ tâm và tính bán kính của của đường tròn ngoại tiếp tam giác ABC
trong không gian với hệ trục tọa độ oxyz, cho 2 mặt phẳng: (d) : x-z+1=0; (B) : x-4y+z-3=0. lập pt mặt phẳng (p) vuông góc với hai mặt phẳng (d),(B) và tiếp xúc với mặt cầu (S): (x-1)^2 + (y-1)^2 + (z-1)^2 = 4
Trong không gian với hệ trục tọa độ Oxyz cho hình chóp S.ABCD có đáy ABCD là hình thoi, AC cắt BD tại gốc tọa độ. Biết A(2;0;0); B(0;1;0); S(0;0;\(2\sqrt{2}\)).Gọi M là trung điểm cạnh SC
a. Tính góc và khoảng cách giữa 2 đường thẳng SA; BM
b. Giả sử mặt phẳng (ABM) cắt đường thẳng SD tại N. Tính thể tích khối hình chóp S.ABMN
Cho hình bình hành ABCD ncos phương trình đường chéo AC: x-y+1=0 điểm G(1;4) là trọng tâm tam giác ABC điểm E(0;-3) thuộc đường cao kẻ từ D của tam giác ACD. Tìm toạ độ các đỉnh của hình bình hành cho S tứ giác AGCD=32 và tung độ yA>0
Trong mặt phẳng Oxy cho hình vuông ABCD có Aϵd: x-y-4=0, đường thẳng BC và CD lần lượt qua M(0;4), N(0;2). Biết tam giác AMN cân tại A. Hãy xác định tọa độ các đỉnh của hình vuông.
mọi người giúp mình với, cảm ơn mọi người nhiều