Bài 1: Hệ tọa độ trong không gian

Nguyễn Đình Hồng

Trong không gian với hệ trục tọa độ Oxyz cho hình chóp S.ABCD có đáy ABCD là hình thoi, AC cắt BD tại gốc tọa độ. Biết A(2;0;0); B(0;1;0); S(0;0;\(2\sqrt{2}\)).Gọi M là trung điểm cạnh SC

a. Tính góc và khoảng cách giữa 2 đường thẳng SA; BM

b. Giả sử mặt phẳng (ABM) cắt đường thẳng SD tại N. Tính thể tích khối hình chóp S.ABMN

Phạm Thái Dương
21 tháng 5 2016 lúc 20:30

z C B O A D y S x M N

a. Do ABCD là hình thoi có tâm là O nên từ giả thiết ta có :

\(C=\left(-2;0;0\right)\)

\(D=\left(0;-1;0\right)\)

Từ đó M là trung điểm của SC nên :

\(M\left(-1;0=-\sqrt{2}\right)\)

Ta có \(\overrightarrow{SA}=\left(2;0;-2\sqrt{2}\right)\)

         \(\overrightarrow{BM}=\left(-1;-1;\sqrt{2}\right)\)

Gọi \(\alpha\) là góc giữa 2 đường thẳng SA, MB, ta có :

\(\cos\alpha=\frac{\left|\overrightarrow{SA.}\overrightarrow{BM}\right|}{\left|\overrightarrow{SA}\right|.\left|\overrightarrow{MB}\right|}=\frac{\left|-2-4\right|}{\sqrt{4+8}.\sqrt{1+2+1}}=\frac{6}{4\sqrt{3}}=\frac{\sqrt{3}}{2}\)

Vậy \(\alpha=60^0\)

Để tính khoảng cách giữa 2 đường thẳng chéo nhau SA, BM ta sử dụng công thức :

\(d\left(SA;BM\right)=\frac{\left|\left[\overrightarrow{SA};\overrightarrow{BM}\right].\overrightarrow{AB}\right|}{\left|\left[\overrightarrow{SA};\overrightarrow{BM}\right]\right|}\)  (1)

Theo công thức  xác định tọa độ vecto \(\left[\overrightarrow{SA};\overrightarrow{BM}\right]\) ta có :

\(\left[\overrightarrow{SA};\overrightarrow{BM}\right]=\left(\left|\begin{matrix}0&-2\sqrt{2}\\-1&\sqrt{2}\end{matrix}\right|;\left|\begin{matrix}-2\sqrt{2}&2\\\sqrt{2}&-1\end{matrix}\right|;\left|\begin{matrix}2&0\\-1&-1\end{matrix}\right|\right)\)

                  \(=\left(-2\sqrt{2};1;0\right)\)

\(\Rightarrow\left|\left[\overrightarrow{SA};\overrightarrow{BM}\right]\right|=\sqrt{12}\)

\(\overrightarrow{AB}=\left(-2;1;0\right)\)

\(\Rightarrow\left[\overrightarrow{SA};\overrightarrow{BM}\right].\overrightarrow{AB}=4\sqrt{2}\)

Thay vào (1) ta có :

\(d\left(SA;BM\right)=\frac{4\sqrt{2}}{\sqrt{12}}=\frac{2\sqrt{6}}{3}\)

b. Vì AB \\ mặt phẳng (SDC) nên MN \\ DC. Suy ra N là trung điểm của SD

\(\Rightarrow N=\left(0;-\frac{1}{2};\sqrt{2}\right)\)

Dễ thấy :

\(V_{S.ABMN}=V_{S.ABN}+V_{S.BMN}\)

              \(=\frac{1}{6}\left|\left[\overrightarrow{SA};\overrightarrow{BM}\right].\overrightarrow{SN}\right|+\frac{1}{6}\left|\left[\overrightarrow{SB};\overrightarrow{SM}\right].\overrightarrow{SN}\right|\)    (2)

Ta có \(\overrightarrow{SA}=\left(2;0;-2\sqrt{2}\right)\)

         \(\overrightarrow{SN}=\left(0;-\frac{1}{2};-\sqrt{2}\right)\)

         \(\overrightarrow{SB}=\left(0;1;-2\sqrt{2}\right)\)

         \(\overrightarrow{SM}=\left(-1;0;-\sqrt{2}\right)\)

Ta lại có :

\(\left[\overrightarrow{SA};\overrightarrow{SB}\right]=\left(\left|\begin{matrix}0&-2\sqrt{2}\\-1&-2\sqrt{2}\end{matrix}\right|;\left|\begin{matrix}-2\sqrt{2}&2\\-2\sqrt{2}&0\end{matrix}\right|;\left|\begin{matrix}2&0\\0&1\end{matrix}\right|\right)\)

                 \(=\left(2\sqrt{2};4\sqrt{2};2\right)\)

\(\left[\overrightarrow{SB};\overrightarrow{SM}\right]=\left(\left|\begin{matrix}1&-2\sqrt{2}\\0&\sqrt{2}\end{matrix}\right|;\left|\begin{matrix}-2\sqrt{2}&0\\-\sqrt{2}&-1\end{matrix}\right|;\left|\begin{matrix}0&1\\-1&0\end{matrix}\right|\right)\)

                 \(=\left(-\sqrt{2};2\sqrt{2};1\right)\)

Thay vào (2) được :

\(V_{S.ABMN}=\frac{1}{6}\left(\left|-2\sqrt{2}-2\sqrt{2}\right|+\left|-\sqrt{2}-\sqrt{2}\right|\right)=\sqrt{2}\)

Bình luận (0)

Các câu hỏi tương tự
yen le
Xem chi tiết
Bi Bin
Xem chi tiết
Phạm Thảo Vân
Xem chi tiết
giang ut
Xem chi tiết
my vương
Xem chi tiết
Hoa Thanh Tran
Xem chi tiết
Bảo Gia
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Meo Con Nguyen
Xem chi tiết