Tính :
S= \(\dfrac{\left(1^4+\dfrac{1}{4}\right).\left(3^4+\dfrac{1}{4}\right)......\left(19^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right).\left(4^4+\dfrac{1}{4}\right).......\left(10^4+\dfrac{1}{4}\right)}\)
Tính rồi so A và B :
\(A=\left(0,25\right)^{-1}.\left(1\dfrac{1}{4}\right)^2+25\left[\left(\dfrac{4}{3}\right)^{-2}:\left(1,25\right)^3\right]:\left(\dfrac{-2}{3}\right)^{-3}\)
\(B=\left(0,2\right)^{-3}.\left[\left(\dfrac{-1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}:\left(\dfrac{1}{8}\right)^{-1}-\left(2^{-3}\right)^{-2}:\dfrac{1}{2^6}\)
f, \(x^2-x+25\)
\(=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^2+25\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{99}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\) ≥ 0 nên \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{99}{4}\ge\dfrac{99}{4}\) với mọi x
Dấu "=" xảy ra ⇔ \(x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy GTNN của đa thức là \(\dfrac{99}{4}\) tại \(x=\dfrac{1}{2}\)
Tính M = \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{2017^2}\right)\)
Tính
\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)....\left(1-\dfrac{1}{1998^2}\right)\)
\(P=\left(\dfrac{x^2-1}{x^4-x^2+1}+\dfrac{2}{x^6+1}-\dfrac{1}{x^2+1}\right).\left(x^2-\dfrac{x^4+x^2-1}{x^4+x^2+1}\right)\)
a,Rút gọn b,Tìm GTLN
Bài 1: (4 điểm) Thực hiện phép tính:
a/ \(\dfrac{1-x}{x^2-2x+1}+\dfrac{x+1}{x-1}\) b/ \(\dfrac{2x}{3y^4z}.\left(-\dfrac{4y^2z}{5x}\right).\left(-\dfrac{15y^3}{8xz}\right)\)
Tính:
\(15\dfrac{1}{4}:\left(\dfrac{-7}{5}\right)-25\dfrac{1}{4}\cdot\left(\dfrac{-7}{5}\right)\)
38-2y=4/3
yx-4.xx+6
\(\left(\dfrac{x}{y}\right)^{\left(4x-9\right)}\)
((2x+y)6)8
x2y.x4z
Cho biểu thức:
A\(=\left(\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\dfrac{2x^2+4x-1}{x^3+1}-\dfrac{1}{x+1}\right):\dfrac{x^2-4}{3x^2+6x}\)
a/ Rút gọn A
b/ Tìm x ∈ Z để A nguyên