Ta có:
\(\left(1+2+...+k\right)^2=1^3+2^3+...+k^3\)\(\left(k\in N,k>0\right)\)
C/m: \(\left(1+2+...+k\right)^2=\left[\frac{k\left(k+1\right)}{2}\right]^2=\frac{k^2\left(k+1\right)^2}{4}\)
\(1^3=1^2\)
\(2^3=\left(1+2\right)^2-1^2\)
...
\(k^3=\left(1+2+...+k\right)^2-\left(1+2+...+k-1\right)^2\)
\(\Rightarrow\)\(\left(1+2+...+k\right)^2=1^3+2^3+...+k^3\)
Áp dụng ta có:
\(S=\left(1+2+...+100\right)^2=\left(5050\right)^2=25502500\)
Ta có (n-1)n(n+1)=n3 -n
=>n3 =n+(n1)n(n+1)
Áp dụng vào biểu thức A:
A=13 +23 +...+1003
=>A=1+2+1.2.3+3+2.3.4+...+100+99.100.101
=> A=(1+2+3+...+100) +(1.2.3+2.3.4+..+99.100.101)
=>A =5050+101989800
=> A=101994850