mấy câu này trên mạng và chtt có đầy, bn nên tìm trc khi hỏi để tránh câu hỏi nhiều lần gây nhàm chán
mấy câu này trên mạng và chtt có đầy, bn nên tìm trc khi hỏi để tránh câu hỏi nhiều lần gây nhàm chán
Bài 1. Chứng tỏ rằng: B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}< 1\)
Bài 2. so sánh : A=\(\dfrac{2011+2012}{2012+2013}\)
và B=\(\dfrac{2011}{2012}+\dfrac{2012}{2013}\)
Bài 3. Rút gọn : B= \(\left(1-\dfrac{1}{1}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{20}\right)\)
Bài 4. Rút gọn biểu thức : A= \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}\)
Bài 5. Tìm số nguyên \(\pi\) sao cho \(\pi+5\) chia hết cho \(\pi-2\)
HELP ME!!!! MÌNH TICK CHO HA
Rút gon biểu thức :
A= \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}\)
Tính
P=\(\left(1-\dfrac{28}{10}\right)\left(1-\dfrac{52}{22}\right)\left(1-\dfrac{80}{36}\right)...\left(1-\dfrac{21808}{10900}\right)\)
Q=\(\dfrac{1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}}{\dfrac{2013}{1}+\dfrac{2014}{2}+\dfrac{2015}{3}+...+\dfrac{4023}{2011}+\dfrac{4024}{2012}-2012}\)
BT1: CMR:
a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)
b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)
c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)
d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)
e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)
BT2: Tính tổng
a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)
BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
CMR: 1 < S < 2
Tính \(M=\dfrac{\dfrac{7}{2012}+\dfrac{7}{9}-\dfrac{1}{4}}{\dfrac{5}{9}-\dfrac{3}{2012}-\dfrac{1}{2}}\)
Bài 1: Tính hợp lý:
a. 1152 - (374 + 1152) + (374 - 65)
b. \(\dfrac{7}{12}\) + \(\dfrac{5}{6}\) + \(\dfrac{1}{4}\) - \(\dfrac{3}{7}\) - \(\dfrac{5}{12}\)
c. \(\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\)
d, \(\dfrac{3}{2^2}\) . \(\dfrac{8}{3^2}\) . \(\dfrac{15}{4^2}\) ... \(\dfrac{899}{30^2}\)
Bài 2: Tìm x biết:
a, 2x + 2x+1 + 2x+2 + 2 x+3 = 480
b, \(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\) . x = \(\dfrac{2012}{1}+\dfrac{2011}{2}+\dfrac{2010}{3}+...+\dfrac{2}{2011}+\dfrac{1}{2012}.\)
Tính hợp lí A = \(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}{\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{1}{3}.\dfrac{1}{4}}\)
Tính \(\dfrac{P}{Q}\) biết:
P= \(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}\)
Q= \(\dfrac{1}{2011}+\dfrac{2}{2010}+\dfrac{3}{2009}+...+\dfrac{2010}{2}+\dfrac{2011}{1}\)
BT2: Tính nhanh
5) \(1-\dfrac{1}{2}+2-\dfrac{2}{3}+3-\dfrac{3}{4}+4-\dfrac{1}{4}-3-\dfrac{1}{3}-2-\dfrac{1}{2}-1\)
6) \(\left(\dfrac{5}{7}-\dfrac{7}{5}\right)-\left[\dfrac{1}{2}-\left(-\dfrac{2}{7}-\dfrac{1}{10}\right)\right]\)