a) (4x2 – 9y2) : (2x – 3y) = [(2x)2 – (3y)2] : (2x – 3y) = 2x + 3y;
b) (27x3 – 1) : (3x – 1) = [(3x)3 – 1] : (3x – 1) = (3x)2 + 3x + 1 = 9x2 + 3x + 1
c) (8x3 + 1) : (4x2 – 2x + 1) = [(2x)3 + 1] : (4x2 – 2x + 1)
= (2x + 1)[(2x)2 – 2x + 1] : (4x2 – 2x + 1)
= (2x + 1)(4x2 – 2x + 1) : (4x2 – 2x + 1) = 2x + 1
d) (x2 – 3x + xy -3y) : (x + y)
= [(x2 + xy) – (3x + 3y)] : (x + y)
= [x(x + y) – 3(x + y)] : (x + y)
= (x + y)(x – 3) : (x + y)
= x – 3.
a) (4x2−9y2):(2x−3y)=[(2x)2−(3y)2]:(2x−3y)(4x2−9y2):(2x−3y)=[(2x)2−(3y)2]:(2x−3y)
=(2x−3y).(2x+3y):(2x−3y)=2x+3y=(2x−3y).(2x+3y):(2x−3y)=2x+3y;
b) (27x3−1):(3x−1)=[(3x)3−13]:(3x−1)(27x3−1):(3x−1)=[(3x)3−13]:(3x−1)
=(3x−1).[(3x)2+3x+1]:(3x−1)=9x2+3x+1=(3x−1).[(3x)2+3x+1]:(3x−1)=9x2+3x+1
c) (8x3+1):(4x2−2x+1)=[(2x)3+13]:(4x2−2x+1)(8x3+1):(4x2−2x+1)=[(2x)3+13]:(4x2−2x+1)
=(2x+1)[(2x)2−2x+1]:(4x2−2x+1)=(2x+1)[(2x)2−2x+1]:(4x2−2x+1)
=(2x+1)(4x2−2x+1):(4x2−2x+1)=2x+1=(2x+1)(4x2−2x+1):(4x2−2x+1)=2x+1
d) (x2−3x+xy−3y):(x+y)(x2−3x+xy−3y):(x+y)
=[(x2+xy)−(3x+3y)]:(x+y)=[x(x+y)−3(x+y)]:(x+y)=(x+y)(x−3):(x+y)=x−3