Lời giải:
Áp dụng nguyên hàm từng phần:
\(\int 3x^2\cos 2xdx=\frac{3}{2}\int x^2d(\sin 2x)=\frac{3}{2}[x^2\sin 2x-\int \sin 2xd(x^2)]\)
\(=\frac{3}{2}[x^2\sin 2x-2\int x\sin 2xdx]\)
\(=\frac{3}{2}[x^2\sin 2x+\int xd(\cos 2x)]=\frac{3}{2}[x^2\sin 2x+x\cos 2x-\int \cos 2xdx]\)
\(=\frac{3}{2}[x^2\sin 2x+x\cos 2x-\frac{\sin 2x}{2}+c]\)
\(=\frac{3}{4}(2x^2\sin 2x-\sin 2x+2x\cos 2x)+C\)