Tìm Min của biểu thức F=y-x trên miền xác định bởi hệ \(\left\{{}\begin{matrix}2x+y\le2\\x-y\le2\\5x+y\ge-4\end{matrix}\right.\)
Biểu thức F=y-x đạt Min với đk \(\left\{{}\begin{matrix}-2x+y\le-2\\x-2y\le2\\x+y\le5\\x\ge0\end{matrix}\right.\) tại điểm S(x;y) có tọa độ là
Tìm Min của biểu thức F(x;y) = x-2y với điều kiện \(\left\{{}\begin{matrix}0\le y\le5\\x\ge0\\x+y-2\ge0\\x-y-2\le0\end{matrix}\right.\)
Biểu thức L=y-x, với x và y thỏa mãn hệ bất pt \(\left\{{}\begin{matrix}2x+3y-6\le0\\x\ge0\\2x-3y-1\le0\end{matrix}\right.\), đạt Max tại a và đạt Min tại b. Tính a và b
Tìm Max của biểu thức F(x;y) = x+2y với điều kiện \(\left\{{}\begin{matrix}0\le y\le4\\x\ge0\\x-y-1\le0\\x+2y-10\le0\end{matrix}\right.\)
giải hệ:
1,\(\left\{{}\begin{matrix}x^3+1=2y\\y^3+1=2x\end{matrix}\right.\)
2,\(\left\{{}\begin{matrix}2x+y=\dfrac{3}{x^2}\\2y+x=\dfrac{3}{y^2}\end{matrix}\right.\)
Cho các số x,y ϵ R thỏa mãn hệ bất phương trình sau \(\left\{{}\begin{matrix}x+y\ge3\\x\ge0\\y\ge0\\2x+y\le6\end{matrix}\right.\). Tìm giá trị nhỏ nhất và lớn nhất của biểu thức: F = 5x-6y+2021
giải hệ phương trình
a) \(\left\{{}\begin{matrix}\sqrt{2x^2+2y^2}+\sqrt{\frac{4}{3}\left(x^2+xy+y^2\right)}=2\left(x+y\right)\\\sqrt{3x+1}+\sqrt{5x+4}=3xy-y+3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{x+2y+1}+2\sqrt[3]{12x+7y+8}=2xy+x+5\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2+xy+x+3=0\\\left(x+1\right)^2+3\left(y+1\right)+2\left(xy-\sqrt{x^2y+2y}\right)=0\end{matrix}\right.\)
Giải hệ pt
a) \(\left\{{}\begin{matrix}x+\dfrac{y}{\sqrt{1+x^2}+x}+y^2=0\\\dfrac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{x^2+4}+\sqrt{y^2+2y-4}=4\\\sqrt{x^2+9}+y=5\end{matrix}\right.\)