Lời giải:
\(\lim\limits \frac{4n^2+3n+1}{(3n-1)^2}=\lim\limits\frac{4n^2+3n+1}{9n^2-6n+1}=\lim\limits\frac{4+\frac{3}{n}+\frac{1}{n^2}}{9-\frac{6}{n}+\frac{1}{n^2}}=\frac{4}{9}\)
Lời giải:
\(\lim\limits \frac{4n^2+3n+1}{(3n-1)^2}=\lim\limits\frac{4n^2+3n+1}{9n^2-6n+1}=\lim\limits\frac{4+\frac{3}{n}+\frac{1}{n^2}}{9-\frac{6}{n}+\frac{1}{n^2}}=\frac{4}{9}\)
tính các giới hạn sau:
a) lim (3n2+n2-1)
b)lim \(\dfrac{n^3+3n+1}{2n-n^3}\)
c) lim \(\dfrac{-2n^3+3n+1}{n-n^2}\)
d) lim \(\left(n+\sqrt{n^2-2n}\right)\)
e) lim \(\left(2n-3.2^n+1\right)\)
f) lim \(\left(\sqrt{4n^2-n}-2n\right)\)
g) lim \(\left(\sqrt{n^2+3n-1}-\sqrt[3]{n^3-n}\right)\)
Tính giới hạn :
L = lim \(\dfrac{\left(n^2+2n\right)\left(2n^3+1\right)\left(4n+5\right)}{\left(n^4-3n-1\right)\left(3n^2-7\right)}\)
Tính các giới hạn sau
1,Lim\(\left(\dfrac{2n^3}{2n^2+3}+\dfrac{1-5n^2}{5n+1}\right)\)
2,a,Lim\(\left(\sqrt{n^2+n}-\sqrt{n^2+2}\right)\)
b,Lim\(\dfrac{\sqrt{n^4+3n-2}}{2n^2-n+3}\)
c,Lim\(\dfrac{\sqrt{n^2-4n}-\sqrt{4n^2+1}}{\sqrt{3n^2+1}-n}\)
Tìm các giới hạn sau:
\(a,\dfrac{4n^5-3n^2}{\left(3n^2-2\right)\left(1-4n^3\right)}\)
\(b,\dfrac{\left(n^2+1\right)\left(n-10\right)^2}{\left(n+1\right)\left(3n-3\right)^3}\)
Tìm các giới hạn sau:
a) \(lim\sqrt[3]{-n^3+2n^2-5}\)
b) \(lim\dfrac{1}{\sqrt{n+1}-\sqrt{n}}\)
c) \(lim\left(\dfrac{1}{n+1}-n\right)\)
d) \(lim\left(\dfrac{2n^2-1}{n+1}-2n\right)\)
e) \(lim\dfrac{2n^3+n^2-3n+1}{2-3n}\)
Tính giới hạn của L =lim \(\dfrac{\left(2n-n^3\right)\left(3n^2+1\right)}{\left(2n-1\right)\left(n^4-7\right)}\)
Tìm các giới hạn sau:
\(a,\dfrac{\left(2n+1\right)\left(3n-2\right)^2}{n^3+n-1}\)
\(b,\dfrac{2n-1}{3n^2+4n-1}\)
Tìm các giới hạn sau:
a) \(lim\left(\sqrt{4n+1}-2\sqrt{n}\right)\)
b) \(lim\left(\sqrt{n^2+2n}-\sqrt{n^2-2n}-n\right)\)
c) \(lim\left(\sqrt{9^n-3^n}-4^n\right)\)
d) \(lim\left(3n^3+2n^2+n\right)\)
tìm giới hạn \(lim\left(\dfrac{2n^2+a}{n^3-3n+1}-8a\right)\)