Ta có: \(P=\dfrac{2016}{x^2+4x+2021}\)
\(=\dfrac{2016}{x^2+2x2+4+2017}=\dfrac{2016}{\left(x+2\right)^2+2017}\)
Vì \(\left(x+2\right)^2+2017\ge0\) nên để P lớn nhất thì \(\left(x+2\right)^2+2017\) nhỏ nhất
Lại có: \(\left(x+2\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+2017\ge2017\)
\(\Rightarrow P=\dfrac{2016}{\left(x+2\right)^2+2017}\le\dfrac{2016}{2017}\)
Dấu " = " khi \(x+2=0\Rightarrow x=-2\)
Vậy x = -2