ta có : \(5tan40.tan50-cos^247-3-cos^243\)
\(=5tan40.tan\left(90-40\right)-cos^247-cos^2\left(90-47\right)-3\)
\(=5.tan40.cot40-cos^247-sin^247-3=5-1-3=1\)
ta có : \(5tan40.tan50-cos^247-3-cos^243\)
\(=5tan40.tan\left(90-40\right)-cos^247-cos^2\left(90-47\right)-3\)
\(=5.tan40.cot40-cos^247-sin^247-3=5-1-3=1\)
Tính giá trị biểu thức
a) A = \(cos^252^0.sin45^0+sin^252^0.cos45^0\)
b) B = \(tan60^0.cos^247^0+sin^247^0.cot30^0\)
Tính giá trị của biểu thức:
\(A=\frac{3\cos67^0}{2\tan23^0}-\frac{\cos^236^0+\cos^254^0-\cos^217^0-\cos^273^0}{\sin^224^0+\sin^266^0+\sin^215^0+\sin^275^0}\)
Giá trị cuẩ biểu thức A = \(\cos^25^0+\cos^210^0+\cos^215^0+\cos^220^0+...+\cos^285^0\) là bao nhiêu ?
Tính giá trị của biểu thức
A=\(\sin^210^0+\sin^220^0+\sin^230^0+...+\sin^280^0+2013\)
B=\(\cos^21^0+\cos^22^0+...+\cos^289^0\)
C=\(\frac{\sin33^0}{\cos57^0}+\frac{\tan32^0}{\cot58^0}-2\left(\sin20^0.\cos70^0+\cos20^0.\sin70^0\right)\)
D=\(4\cos^2a-6\sin^2a\) biết \(\sin a=\frac{1}{5}\)
Tính B = \(cos^21^0 + cos^22^0 + .......+ cos^288^0 + cos^289^0\)
Bài 1:
a) Tính: A=\(\sin^22^0+\sin^24^0+.........+\sin^286^0+\sin^288^0\)
b) CMR: Biểu thức sau không phụ thuộc vào x:
P= 1994(sin6x+cos6x)-2991(sin4x+cos4x)
Bài 1: Tính
a) A = \(\frac{sin35^0}{cos35^0}.tan55^0+\frac{cos55^0}{sin55^0}.cot35^0\)
b) B = \(tan67^0+cos^216^0-cot23^0+cos^274^0-\frac{cot37^0}{tan53^0}\)
Cho 0* < x <90*. Chứng minh đẳng thức sau:
\(\dfrac{\sin x+\cos x-1}{1-\cos x}=\dfrac{2\cos x}{\sin x-\cos x+1}\)
1.Đơn giản biểu thức sau:
a) (1-cosx)(1+cosx) - sin^2x
b) tan^2x(2cos^2x+sin^2x -1)+cos^2x
2.So sánh
3-√5 và 0