Đặt \(A=\frac{25^3.3+25^3.5}{2^{27}}\)
Ta có:\(A=\frac{25^3\left(3+5\right)}{2^{27}}\)
\(A=\frac{25^3.8}{2^{27}}\)
\(A=\frac{25^3.2^3}{\left(2^9\right)^3}\)
\(A=\frac{50^3}{512^3}\)
\(A=\left(50:512\right)^3\)
\(A=\left(\frac{25}{256}\right)^3\)
Vậy \(A=\left(\frac{25}{256}\right)^3\)
\(\frac{25^3\cdot3+25^3\cdot5}{2^{27}}=\frac{25^3\left(3+5\right)}{2^{27}}=\frac{5^3\cdot2^3}{2^{27}}=\frac{10^3}{\left(2^9\right)^3}=\left(\frac{5}{256}\right)^3\)
thì có bạn Nobi Nobita với tớ giải tiếp rồi đó.