A=\(\frac{\frac{1}{3}-\frac{5}{2}}{\frac{3}{4}-\frac{1}{2}}\).\(\frac{\frac{5}{6}+\frac{7}{3}}{1-\frac{5}{6}}\).\(\frac{-\frac{2}{5}+1}{\frac{2}{5}+1}\)
B=\(\frac{\frac{1}{3}-\frac{4}{5}}{\frac{1}{3}-\frac{4}{5}}\).\(\frac{\frac{3}{4}-\frac{5}{3}}{\frac{3}{4}+\frac{5}{3}}\):\(\frac{\frac{4}{5}-1}{1-\frac{2}{3}}\)
mong mọi người giải giúp em
Tính nhanh
\(\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}-\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{64}-\frac{3}{264}}{1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
Bài 1:Tính
\(\frac{\frac{1}{3}-\frac{4}{5}}{\frac{1}{3}+\frac{4}{5}}.\frac{\frac{3}{4}-\frac{5}{3}}{\frac{3}{4}+\frac{5}{3}}:\frac{\frac{4}{5}-1}{1-\frac{2}{3}}\)
Tính:
a) C=\(\frac{8^{10}+4^{10}}{8^4+4^{11}}\)
b) D=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}\)
c) E=\(\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{2}{1015}-\frac{1}{36}+\frac{1}{15}-\frac{2}{9}\)
Tìm x,y ϵ Z
a,\(\frac{1}{x}=\frac{1}{6}+\frac{y}{3}\)
b,\(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
c,\(\frac{x}{4}-\frac{1}{y}=\frac{3}{4}\)
d,\(\frac{x}{8}-\frac{2}{y}=\frac{3}{4}\)
e,\(\frac{x}{4}-\frac{2}{y}=\frac{3}{2}\)
g,\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)
x≠y≠0
1) chứng minh : \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
2) cho :\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)Chứng minh \(\frac{7}{12}< A< \frac{5}{6}\)
Thực hiện phép tính một cách hợp lí
a/ \(\frac{1}{3}-\left(\frac{-3}{4}\right)-\left(\frac{-3}{5}\right)+\frac{1}{57}-\frac{1}{36}+\frac{1}{15}+\left(\frac{-2}{9}\right)\)
b/ \(-\frac{-1}{3}-\left(-\frac{3}{5}\right)+\left(\frac{-1}{9}\right)+\frac{1}{127}-\frac{7}{18}+\frac{4}{35}-\left(\frac{-2}{7}\right)\)
A=\(\frac{\frac{1}{2018}+\frac{2}{2017}+\frac{3}{2016}+....+\frac{2017}{2}+\frac{2018}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2019}}\). Chứng minh rằng A là số nguyên
Mong mọi người giúp
a, \(5\frac{4}{13}.15\frac{3}{41}-5\frac{4}{13}.2\frac{3}{41}\)
b, \(6.(-\frac{1}{3})^2-(\frac{1}{4}:2-\frac{7}{16}.\frac{-4}{21})\)