Kẻ 1 đường chéo nối B và D. Do AB//CD, => góc ABD=góc CBD(1).
Ta có 2 tam giác ABD và tam giác BDC, tổng 3 góc trong 1 tam giác=180 độ. Do đó, suy ra được tổng các góc chưa có số đo(2).
Qua đó, ta lại có góc ADB+góc BDC=góc B tương tự như vậy với góc D. Tổng góc B và D=170 độ(3)
(1)(2)(3)=>góc D. Từ đó => góc B
Bài 2 đơn giản hơn một chút. Cái này vận dụng tổng 4 góc trong hình thang=360 độ và thêm 2 góc trong cùng phía nữa.
Bài 3 cực kỳ đơn giản . Bạn vẽ hình ra, gọi O là giao điểm 2 đường chéo. Dùng bất đẳng thức trong tam giác chứng minh OA+OB>AB, OD+OC>DC, rồi cộng 2 vế lại, OA+OC=AC, OB+OD=BD =>đpcm
Kẻ 1 đường chéo nối B và D. Do AB//CD, => góc ABD=góc CBD(1).
Ta có 2 tam giác ABD và tam giác BDC, tổng 3 góc trong 1 tam giác=180 độ. Do đó, suy ra được tổng các góc chưa có số đo(2).
Qua đó, ta lại có góc ADB+góc BDC=góc B tương tự như vậy với góc D. Tổng góc B và D=170 độ(3)
(1)(2)(3)=>góc D. Từ đó => góc B
Bài 2 đơn giản hơn một chút. Cái này vận dụng tổng 4 góc trong hình thang=360 độ và thêm 2 góc trong cùng phía nữa.
Bài 3 cực kỳ đơn giản . Bạn vẽ hình ra, gọi O là giao điểm 2 đường chéo. Dùng bất đẳng thức trong tam giác chứng minh OA+OB>AB, OD+OC>DC, rồi cộng 2 vế lại, OA+OC=AC, OB+OD=BD =>đpcm
kẻ đường thẳng vuông góc với 2 cạnh đáy AB và CD; cắt AB và CD lần lượt tại I và K
xét tứ giác AIKD, ta có: góc D = 360o - gócA - gócAIK - gócIKD
= 360o - 60o - 90o - 90o = 1200
tương tự với tứ giác BIKC, ta có: góc B = 360o - gócBIK - góc IKC
= 360o - 130o - 90o - 90o = 500