a) 41,25 x 99 + 41,25
= 41,25 x 99 + 41,25 +1
= 41,25 x ( 99 + 1 )
= 41,25 x 100
= 4125
a) 41,25 x 99 + 41,25
= 41,25 x 99 + 41,25 +1
= 41,25 x ( 99 + 1 )
= 41,25 x 100
= 4125
Cho hình lăng trụ ABC.A'B'C', đều có cạnh bằng a, AA' = a và đỉnh cách đều A, B, C. Gọi lần lượt là trung điểm của cạnh BC và A'B. Tính theo a thể tích khối lăng trụ ABC.A'B'C' và khoảng cách từ C đến mặt phẳng (AMN).
1. Một nhà sản xuất muốn làm một chiếc hộp dạng hình hộp chữ nhật không nắp có đáy là hình vuông và tổng diện tích các mặt là 108 dm^2. Xác định chiều cao h sao cho thể tích của chiếc hộp lớn nhất.
2. Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác đều cạnh 2a, cạnh bên bằng a. Khoảng cách từ điểm A đến mặt phẳng (A'BC) bằng?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với (ABCD), SA = a
a) Tính khoảng cách từ C đến mặt phẳng (SBD)
b) Tính khoảng cách từ D đến mặt phẳng (SBC)
c) Tính khoảng cách từ O đến mặt phẳng (SCD)
d) Tính khoảng cách giữa AB và SC
e) Tính khoảng cách giữa BD và SC
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng a. SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy, góc giữa cạnh SC và mặt phẳng (ABCD) bằng 60 độ, cạnh AC = a. Tính \(\alpha\) theo thể tích khối S.ABCD và khoảng cách từ A đến mặt phẳng (SBC)
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S lên mặt phẳng (ABC) là H thuộc cạnh AB sao cho HA=2HB. Góc giữa 2 đường thẳng SC và mặt phẳng (ABC) bằng 60 độ. Tính thể tích khối chóp A.ABC và tính khoảng cách giữa 2 đường thẳng SA và BC theo a
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, \(SD=\frac{3a}{2}\). Hình chiếu vuông góc của S lên mặt đáy (ABCD) là trung điểm của cạnh AB. Tính theo a thể tích khối chóp s.ABCD và khoảng cách từ A đến mặt phẳng (SBD)
cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tm iacs ABC đều, hình chiếu vuông góc cúa đỉnh S trên mặt phẳng ABCD trùng với trọng tâm tam giác ABc. Góc giữa đường thẳng SD với mp ABCD bằng 30. Tính khoảng cách từ B đến mặt phẳng (SCD) theo a
Cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, cạnh bên SA vuông với đáy. Trên cạnh BC lấy điểm M di động và cạnh CD lấy N di động sao cho góc MAN=45 độ. Gọi BM=x, DN=y và (0<x;y<a)
Chứng minh a(x+y)=a2-xy
Cho lăng trụ ABC.A'B'C' có đáy là tam tác đều cạnh a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) là trung điểm của cạnh AB, góc giữa đường thẳng A'C và mặt phẳng đáy bằng 60 độ. Tính theo a thể tích của khối lăng trụ ABC.A'B'C' và khoảng cách từ điểm B đến mặt phẳn (ACC'A')