\(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}}{\dfrac{2}{2}+\dfrac{2}{2^2}+...+\dfrac{2}{2^{10}}}=\dfrac{\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}}{2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\right)}=\dfrac{1}{2}\)
A = \(\dfrac{\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{10}}}{\dfrac{2}{2}+\dfrac{2}{2^2}+\dfrac{2}{2^3}+...+\dfrac{2}{2^{10}}}\)
= \(\dfrac{\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}}{2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)}\)
= \(\dfrac{1}{2}\)