Tính:
A=\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
B=\(\sqrt{9-4\sqrt{5}}+\sqrt{9+4\sqrt{5}}\)
C=\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
D=\(\sqrt{5\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
E=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)(2 cách)
F=\(\dfrac{\sqrt{17-12\sqrt{2}}}{\sqrt{3-2\sqrt{2}}}-\dfrac{\sqrt{17}+12\sqrt{2}}{\sqrt{3+2\sqrt{2}}}\)
1
a. \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\) b.\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\) c. \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
d. \(\frac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\) e. \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\) f. \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
1. Áp dụng quy tắc khai phương 1 thương, tính:
\(\frac{3\sqrt{128}}{\sqrt{2}}\)
2. Tính:
a. \(\left(\sqrt{32}-\sqrt{50}+\sqrt{8}\right):\sqrt{2}\)
b. \(\left(5\sqrt{48}-3\sqrt{27}+2\sqrt{12}\right):\sqrt{3}\)
c. \(\left(\sqrt{6}-\sqrt{2}\right)\sqrt{2+\sqrt{3}}\)
f. \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
Tính:
a) \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
b) \(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
c) \(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
bài 1 : giải pt
a,\(\sqrt{\dfrac{2x^2-4x+2}{6}}=1\)
b, \(\dfrac{6}{x-4}=\sqrt{2}\)
c,\(\sqrt{\dfrac{20}{2x^2-8x+8}}=\sqrt{5}\)
bài 2 : tính
a, \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
b,\(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)
c, \(\left(12\sqrt{20}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
1, 1+\(\sqrt{\text{6}+2\sqrt{5}}\)
2, \(\sqrt{\text{7}-2\sqrt{\text{10}}}\) +\(\sqrt{\text{2}}\)
3, \(\sqrt{\text{7}+4\sqrt{3}}\)
\(\sqrt{3}×\sqrt{27}-\sqrt{144}:\sqrt{36}\)
\(\left(2\sqrt{9}+3\sqrt{36}\right):4\)
\(\sqrt{7}-\sqrt{8-2\sqrt{7}}\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
\(\dfrac{5+3\sqrt{5}}{\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\)
\(\sqrt{27}+5\sqrt{12}-2\sqrt{3}=11\sqrt{3}\)
tính
1\(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)
2\(\left(2\sqrt{3}-3\right):5\sqrt{3}\)
3\(\left(2\sqrt{18}-3\sqrt{8}+6\right):\sqrt{2}\)
4\(\sqrt{27\left(1-\sqrt{3}\right)^2}:3\sqrt{15}\)
5\(\dfrac{a-\sqrt{b}}{\sqrt{b}}:\dfrac{\sqrt{b}}{a+\sqrt{b}}\)
A\(=\)\((3\sqrt{8}+2\sqrt{50}-4\sqrt{72})\)\(➗\)\(8\sqrt{2}\)
B\(=\)\((-4\sqrt{20}+5\sqrt{500}-3\sqrt{45})\div5 \)
C\(=(\dfrac{\sqrt{3}+1}{\sqrt{3}-1}-\dfrac{\sqrt{3}-1}{\sqrt{3}+1})\div\sqrt{48}\)