cho a/b = c/d chứng minh rằng
1) a/b = c/d = 3a + 2c/3b + 2d
2) ac/bd = a2 - c2/b2 - d2
3) a2/b2 = 3a2 - 2ac/3b2 - 2bc
m.ng giúp mk vs
dấu / là dấu phần đó
Cho abc \(\ne\) 0 và dãy tỉ số bằng nhau: \(\dfrac{5a+b+3c}{2a+c}=\dfrac{a+5b+c}{2b}=\dfrac{a+3b+3c}{b+c}\)
Tính: M = \(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Tìm các số a, b, c biết rằng :
1. \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}\) và a - 2b + 4c = 13
2. 4a = 3b ; 7b = 5c va a - b + c = - 46
3. \(\frac{a}{2}=\frac{2b}{5}=\frac{4c}{7}\)và 3a + 5b + 7c = 123
4. \(\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\) và abc = -108
5. \(\frac{a}{4}=\frac{b}{6},\frac{b}{5}=\frac{c}{8}\)và 5a - 3b - 3c = -536
6. \(\frac{a+3}{5}=\frac{b-2}{3}=\frac{c-1}{7}\)và 3a - 5b + 7c = 86
7. 5a = 8b = 3c và a - 2b + c = 34
8. 2a = 3b = 5c và a + b -c = 95
9. 3a = 7b và a2 - b2 = 160
10. \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a2 + 3b2 - 2c2 = -16
các bạn tl từng câu một cũng đc, giúp mình nhé
Cho a, b, c >0 và dãy tỉ số \(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính giá trị của biểu thức P=\(\dfrac{\left(2a-b\right)\left(2b-c\right)\left(2c-a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Mọi ngừi giúp e bài cuối cùng dzới ah
Cho abc ≠ 0 và dãy tỉ số bằng nhau: \(\dfrac{5a+b+3c}{2a+c}=\dfrac{a+5b+c}{2b}=\dfrac{a+3b+3c}{b+c}\)
Tính: P = \(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)\)
1/ Tìm 2 phân số tối giản biết hiệu của chúng là \(\frac{3}{106}\) và các tử tỉ lệ với 3; 5. Các mẫu tỉ lệ với các số 4; 7.
2/ Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) . Hãy chứng tỏ:
a) \(\frac{a}{b}=\frac{c}{d}=\frac{-2a+7c}{-3b+7d}\)
b) \(\frac{a^2}{b^2}=\frac{3a^2-2ac}{2b^2-2bd}\)
Cho b^2=ac;c^2=bd Với b,c,d Khác 0, 2b+3c khác 4d,b^3+c^3 khác d^3
CMR
(a+b-c/b+c-d)^3=(2a+3b-4c/2b+3d-4c)^3
Rút gọn biểu thức:
a) -(a -b +c ) -( -a -c +d)
b) -(2a- 3b+ 4c ) + (a-b+3c)
Tìm các số a , b , c nếu :
a ) 5a - 3b -3c = - 536 và \(\frac{a}{4}=\frac{b}{6};\frac{b}{5}=\frac{c}{8}\)
b ) 3a - 5b + 7c = 86 và \(\frac{a+3}{5}=\frac{b-2}{3}=\frac{c-1}{7}\)
c ) a - 2b + c = 46 và \(\frac{a}{7}=\frac{b}{6};\frac{b}{5}=\frac{c}{8}\)
d ) 5a = 8b = 3c và a - 2b + c = 34
e ) 3a = 7b và a2 - b2 = 160
g ) a2 + 3b2 - 2c2 = - 16 và \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
i ) a3 + b3 + c3 = 792 và \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)