\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+.......+\dfrac{1}{2^9}\)
\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.......+\dfrac{1}{2^8}\)
\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+.......+\dfrac{1}{2^8}\right)=-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^8}\right)\)
\(\Leftrightarrow A=1-\dfrac{1}{2^9}\)
Ta có: \(\dfrac{1}{2}A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(\Rightarrow A-\dfrac{1}{2}A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)
\(\Rightarrow\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^{10}}\)
\(\Rightarrow A=1-\dfrac{1}{2^9}=\dfrac{511}{512}\)