Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mark Tuan

Tính: a. \(\left(\sqrt{10}+\sqrt{2}\right)\cdot\left(6-2\sqrt{5}\right)\cdot\sqrt{3+\sqrt{5}}\)

b. \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)

c. \(\sqrt{3,5-\sqrt{6}}+\sqrt{3,5+\sqrt{6}}\)

d, \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)

e, \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)

ngonhuminh
22 tháng 8 2017 lúc 14:16

e) \(E=A-\sqrt{2}\)

\(A=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(A^2=8-2\sqrt{16-7}=8-6=2\)

\(A>0=>A=\sqrt{2}\)

\(E=A-\sqrt{2}=0\)

Lê Đình Thái
26 tháng 9 2017 lúc 20:58

a)\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)

=\(\left(6\sqrt{10}+6\sqrt{2}-10\sqrt{2}-2\sqrt{10}\right)\sqrt{3+\sqrt{5}}\)

=\(\left(4\sqrt{10}-4\sqrt{2}\right)\sqrt{3+\sqrt{5}}=\left(4\sqrt{10}-4\sqrt{2}\right)\dfrac{\sqrt{5}+1}{2}\)

=\(\dfrac{20\sqrt{2}+4\sqrt{10}-4\sqrt{10}-4\sqrt{2}}{2}\)

=\(\dfrac{16\sqrt{2}}{2}=8\sqrt{2}\)

b)\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)

=\(\dfrac{\sqrt{5}+1-\sqrt{5}+1-2}{\sqrt{2}}=0\)

c)\(\sqrt{3,5-\sqrt{6}}+\sqrt{3,5+\sqrt{6}}\)

=\(\dfrac{\sqrt{6}-1+\sqrt{6}+1}{\sqrt{2}}=2\sqrt{3}\)

d)\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)

=\(\dfrac{\sqrt{7}-1-\sqrt{7}-1+\sqrt{14}}{\sqrt{2}}=\sqrt{7}-1\)

e)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)

=\(\dfrac{\sqrt{7}+1-\sqrt{7}+1-2}{\sqrt{2}}=0\)

Despacito
23 tháng 4 2018 lúc 16:32

a) \(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right).\sqrt{3+\sqrt{5}}\)

\(=\sqrt{2}\left(\sqrt{5}+1\right).2.\left(3-\sqrt{5}\right).\sqrt{3+\sqrt{5}}\)

\(=\left(\sqrt{5}+1\right)\left(3-\sqrt{5}\right).\sqrt{6+2\sqrt{5}}\)

\(=\left(\sqrt{5}+1\right)\left(3-\sqrt{5}\right).\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=\left(\sqrt{5}+1\right)\left(3-\sqrt{5}\right).\left(\sqrt{5}+1\right)\)

\(=\left(\sqrt{5}+1\right)^2.\left(3-\sqrt{5}\right)\)

\(=\left(6+2\sqrt{5}\right)\left(3-\sqrt{5}\right)\)

\(=18-6\sqrt{5}+6\sqrt{5}-10\)

\(=8\)

Despacito
23 tháng 4 2018 lúc 16:37

b) \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)

\(=\dfrac{\sqrt{2}.\left(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\right)}{\sqrt{2}}\)

\(=\dfrac{\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2}{\sqrt{2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2}{\sqrt{2}}\)

\(=\dfrac{\left|\sqrt{5}+1\right|-\left|\sqrt{5}-1\right|-2}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}+1-\sqrt{5}+1-2}{\sqrt{2}}\)

\(=\dfrac{0}{\sqrt{2}}=0\)

Despacito
23 tháng 4 2018 lúc 16:41

c) \(\sqrt{3,5-\sqrt{6}}+\sqrt{3,5+\sqrt{6}}\)

\(=\sqrt{\dfrac{7}{2}-\sqrt{6}}+\sqrt{\dfrac{7}{2}+\sqrt{6}}\)

\(=\sqrt{7-2\sqrt{6}}+\sqrt{7+2\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{6}-1\right)^2}+\sqrt{\left(\sqrt{6}+1\right)^2}\)

\(=\left|\sqrt{6}-1\right|+\left|\sqrt{6}+1\right|\)

\(=\sqrt{6}-1+\sqrt{6}+1\) ( vì \(\sqrt{6}-1>0;\sqrt{6}+1>0\) )

\(=2\sqrt{6}\)

Despacito
23 tháng 4 2018 lúc 16:50

d) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)\(=\dfrac{\sqrt{2}.\left(\sqrt{4-\sqrt{7}}-\sqrt{4}+\sqrt{7}+\sqrt{7}\right)}{\sqrt{2}}\)

\(=\dfrac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+2\sqrt{7}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+2\sqrt{7}}{\sqrt{2}}\)

\(=\dfrac{\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|+2\sqrt{7}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}-1-\sqrt{7}-1+2\sqrt{7}}{\sqrt{2}}\)

\(=\dfrac{2\sqrt{7}-2}{\sqrt{2}}\)

\(=\dfrac{2\left(\sqrt{7}-1\right)}{\sqrt{2}}\)

\(=\sqrt{2}\left(\sqrt{7}-1\right)\)

Despacito
23 tháng 4 2018 lúc 17:04

e) \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)

\(=\dfrac{\sqrt{2}\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\right)}{\sqrt{2}}\)

\(=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2}{\sqrt{2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}-2}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}+1-\sqrt{7}+1-2}{\sqrt{2}}\)

\(=\dfrac{0}{\sqrt{2}}=0\)


Các câu hỏi tương tự
Byun Baekhyun
Xem chi tiết
Mark Tuan
Xem chi tiết
Quynh Existn
Xem chi tiết
Vũ Ngọc Phương Uyên
Xem chi tiết
Ari Pie
Xem chi tiết
Hiền Vũ Thu
Xem chi tiết
Bao Gia
Xem chi tiết
tam nguyen
Xem chi tiết
Phương Thảo
Xem chi tiết