\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2019.2021}\)
= \(2.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2019.2021}\right)\)
= \(1.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{2019.2021}\right)\)
= \(1.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2019}-\dfrac{1}{2021}\right)\)
= \(1.\left(1-\dfrac{1}{2021}\right)\)
= \(1.\dfrac{2020}{2021}\)
= \(\dfrac{2020}{2021}\)