\(=2\sqrt{\dfrac{4}{3}}-3\sqrt{\dfrac{1}{2}}+\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{4}{3}\sqrt{3}-\dfrac{3}{2}\sqrt{2}+\dfrac{\sqrt{6}}{6}\)
\(=2\sqrt{\dfrac{4}{3}}-3\sqrt{\dfrac{1}{2}}+\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{4}{3}\sqrt{3}-\dfrac{3}{2}\sqrt{2}+\dfrac{\sqrt{6}}{6}\)
tính:
a) \(\sqrt{\dfrac{1}{8}}.\sqrt{2}.\sqrt{125}.\sqrt{\dfrac{1}{5}}\)
b)\(\sqrt{\sqrt{2}-1}.\sqrt{\sqrt{2}+1}\)
c) \(\sqrt{11-6\sqrt{2}}.\sqrt{11+6\sqrt{2}}\)
d) \(\sqrt{12-6\sqrt{3}}.\sqrt{\dfrac{1}{3-\sqrt{3}}}\)
e) \(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
f) \(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
g) \(\left(\dfrac{1}{5-2\sqrt{6}}+\dfrac{2}{5+2\sqrt{6}}\right)\left(15+2\sqrt{6}\right)\)
\(\left(2\sqrt{8}-3\sqrt{3}+1\right):\sqrt{6}\)
A\(=\)\((3\sqrt{8}+2\sqrt{50}-4\sqrt{72})\)\(➗\)\(8\sqrt{2}\)
B\(=\)\((-4\sqrt{20}+5\sqrt{500}-3\sqrt{45})\div5 \)
C\(=(\dfrac{\sqrt{3}+1}{\sqrt{3}-1}-\dfrac{\sqrt{3}-1}{\sqrt{3}+1})\div\sqrt{48}\)
Tính: \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
tính
1\(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)
2\(\left(2\sqrt{3}-3\right):5\sqrt{3}\)
3\(\left(2\sqrt{18}-3\sqrt{8}+6\right):\sqrt{2}\)
4\(\sqrt{27\left(1-\sqrt{3}\right)^2}:3\sqrt{15}\)
5\(\dfrac{a-\sqrt{b}}{\sqrt{b}}:\dfrac{\sqrt{b}}{a+\sqrt{b}}\)
1. Áp dụng quy tắc khai phương 1 thương, tính:
\(\frac{3\sqrt{128}}{\sqrt{2}}\)
2. Tính:
a. \(\left(\sqrt{32}-\sqrt{50}+\sqrt{8}\right):\sqrt{2}\)
b. \(\left(5\sqrt{48}-3\sqrt{27}+2\sqrt{12}\right):\sqrt{3}\)
c. \(\left(\sqrt{6}-\sqrt{2}\right)\sqrt{2+\sqrt{3}}\)
f. \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(\sqrt{3}×\sqrt{27}-\sqrt{144}:\sqrt{36}\)
\(\left(2\sqrt{9}+3\sqrt{36}\right):4\)
\(\sqrt{7}-\sqrt{8-2\sqrt{7}}\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
\(\dfrac{5+3\sqrt{5}}{\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\)
\(\sqrt{27}+5\sqrt{12}-2\sqrt{3}=11\sqrt{3}\)
1
a. \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\) b.\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\) c. \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
d. \(\frac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\) e. \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\) f. \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
rút gọn biểu thức sau
a. \(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-4}\)
b. \(\dfrac{a^2\sqrt{b}-\sqrt{ab^3}}{\sqrt{a^3b^2}-b^2}\)
c. \(\dfrac{a^3-2\sqrt{2}}{a-\sqrt{2}}\)
d. \(18-\sqrt{8}+\dfrac{1}{4}\sqrt{2}\)
Bài 1: rút gọn rồi tính giá trị biểu thức:
A=\(\dfrac{2b\sqrt{x^2-1}-\sqrt{x+1}}{x-2\sqrt{x-1}}\) với x=3; y=\(\sqrt{2}\)
Bài 2: Trục căn thức ở mẫu
a/\(\dfrac{25}{5-2\sqrt{3}}\) b/\(\dfrac{8}{\sqrt{5}+2}\) c/\(\dfrac{6}{2\sqrt{3}-\sqrt{7}}\) d/\(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\) e/\(\dfrac{1}{\sqrt{2}+\sqrt{3}-\sqrt{5}}\)