\(2^{x^2}+3^{2y+1}+5^z=40\)
\(\Rightarrow3^{2y+1}< 40\)
\(\Rightarrow2y+1\le3\)
Mà 2y + 1 là số lẻ nên \(2y+1\in\left\{1;3\right\}\)
+ Với 2y + 1 = 1 => 2y = 0 => y = 0
Thay vào đề bài ta có: \(2^{x^2}+3+5^z=40\)
\(\Rightarrow2^{x^2}+5^z=37\)
\(\Rightarrow2^{x^2}< 37\)
\(\Rightarrow x^2\le5\)
Mà x2 là số chính phương nên \(x^2\in\left\{1;4\right\}\)
Thử với mỗi trường hợp của x ta thấy x = 1 thỏa mãn
Khi đó, 5z = 37 - 21 = 37 - 2 = 35, không tìm được giá trị \(z\in N\) thỏa mãn
+ Với 2y + 1 = 3 => 2y = 2 => y = 1
Thay vào đề bài ta có: \(2^{x^2}+3^3+5^z=40\)
\(\Rightarrow2^{x^2}+27+5^z=40\)
\(\Rightarrow2^{x^2}+5^z=13\)
\(\Rightarrow2^{x^2}< 13\)
\(\Rightarrow x^2\le3\)
Mà x2 là số chính phương nên x2 = 1 => x = 1
Khi đó, 5z = 13 - 2 = 11, không tìm được giá trị \(z\in N\) thỏa mãn
Vậy không tồn tại giá trị x; y; z thỏa mãn đề bài