Tìm x,y,z biết :
a ) \(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}\) bà x + y + z = 25
b ) \(\dfrac{2x}{3}\) = \(\dfrac{3y}{4}=\dfrac{4z}{5}\) và x + y + z = 49
c ) \(\dfrac{x}{2}=\dfrac{y}{3},\) \(\dfrac{y}{4}=\dfrac{z}{5}\) và x + y - z = 10
d ) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) và x.y.z = 810
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}=\dfrac{x+y+z}{10+6+21}=\dfrac{25}{37}\)
Do đó: x=250/37; y=150/37; z=525/37
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: Ta có: x/2=y/3
nên x/8=y/12(1)
Ta có: y/4=z/5
nên y/12=z/15(2)
Từ (1) và (2) suy ra x/8=y/12=z/15
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
Do đó: x=16; y=24; z=30