a, x = -2 hoặc 1
b, x = -4
c, x = 1 hoặc -1
nếu đúng nhớ cho 1 like
a/ \(x-4⋮x-1\)
Mà \(x-1⋮x-1\)
\(\Leftrightarrow5⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(5\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=5\\x-1=-1\\x-1=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\\x=0\\x=-4\end{matrix}\right.\)
Vậy ...
b/ \(2x+5⋮x-1\)
Mà \(x-1⋮x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+5⋮x-1\\2x-2⋮x-1\end{matrix}\right.\)
\(\Leftrightarrow7⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(7\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=7\\x-1=-1\\x-1=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=8\\x=0\\x=-6\end{matrix}\right.\)
Vậy ...
c/ \(x^2+3x+4⋮x+3\)
Mà \(x+3⋮x+3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+3x+4⋮x+3\\x^2+3x⋮x+3\end{matrix}\right.\)
\(\Leftrightarrow4⋮x+3\)
\(\Leftrightarrow x+3\inƯ\left(4\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=1\\x+3=2\\x+3=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\\x=1\end{matrix}\right.\)
Vậy ..