Lời giải:
$z^2+2x^2+6xy+20+4z+9y^2-8x=0$
$\Leftrightarrow (z^2+4z+4)+(x^2+6xy+9y^2)+(x^2-8x+16)=0$
$\Leftrightarrow (z+2)^2+(x+3y)^2+(x-4)^2=0$
Vì $(z+2)^2\geq 0; (x+3y)^2\geq 0; (x-4)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì $(z+2)^2=(x+3y)^2=(x-4)^2=0$
\(\Rightarrow \left\{\begin{matrix} z+2=0\\ x+3y=0\\ x-4=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} z=-2\\ x=4\\ y=\frac{-4}{3}\end{matrix}\right.\)