\(x=\frac{z}{2}\Rightarrow\frac{x}{10}=\frac{z}{20}=\frac{y}{15}\)
\(\Rightarrow\frac{x}{10}=\frac{2y}{30}=\frac{3z}{60}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{2y}{30}=\frac{3z}{60}=\frac{x+2y-3z}{10+30-60}=\frac{-24}{-20}=\frac{6}{5}\)
\(\Rightarrow\left\{\begin{matrix}x=12\\y=18\\z=24\end{matrix}\right.\)
Vậy...
\(x=\frac{z}{2}\) => \(\frac{x}{10}=\frac{\frac{z}{2}}{10}=\frac{z}{20}=\frac{y}{15}=k\) (k thuộc Z) => x= 10k; y= 15k; z= 20k => 2y= 30k; 3z= 60k.
Theo đề ra ta có: x + 2y - 3z = 10k + 30 k - 60k = -20k= -24 => k = \(\frac{6}{5}\).
Thay k =\(\frac{6}{5}\)ta được: x= 12; y= 18; z= 24