Ta có :
\(A=4x^3+11x^2+5x+5\)
\(=4x^3+8x^2+3x^2+6x-5x-10+15\)
\(=4x^2\left(x+2\right)+3x\left(x+2\right)-5\left(x+2\right)+15\)
\(=\left(x+2\right)\left(4x^2+3x-5\right)+15\)
\(\Leftrightarrow A\) chia hết cho \(x+2\) thì \(x+2\inƯ\left(15\right)\)
Ta có các TH :
+, \(x+2=1\Leftrightarrow x=-1\)
+, \(x+2=-1\Leftrightarrow x=-3\)
+, \(x+2=15\Leftrightarrow x=13\)
+, \(x+2=-15\Leftrightarrow x=-17\)
+, \(x+2=-3\Leftrightarrow x=-5\)
+, \(x+2=3\Leftrightarrow x=1\)
+, \(x+3=5\Leftrightarrow x=2\)
+, \(x+3=-5\Leftrightarrow x=-8\)
Vậy...