ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Để \(\dfrac{2\sqrt{x}+5}{\sqrt{x}-2}\) là số nguyên thì \(2\sqrt{x}+5⋮\sqrt{x}-2\)
\(\Leftrightarrow2\sqrt{x}-4+9⋮\sqrt{x}-2\)
mà \(2\sqrt{x}-4⋮\sqrt{x}-2\)
nên \(9⋮\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}-2\inƯ\left(9\right)\)
\(\Leftrightarrow\sqrt{x}-2\in\left\{1;-1;3;-3;9;-9\right\}\)
mà \(\sqrt{x}-2\ge-2\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x}-2\in\left\{1;-1;3;9\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{3;1;5;11\right\}\)
hay \(x\in\left\{9;1;25;121\right\}\)(nhận)
Vậy: Để \(\dfrac{2\sqrt{x}+5}{\sqrt{x}-2}\) nguyên thì \(x\in\left\{9;1;25;121\right\}\)