Vì \(\left(2x-1\right)^{2k}\ge0;\left(y-\frac{1}{2}\right)^{2k}\ge0\forall x;y\)
Mà theo đề bài: \(\left(2x-1\right)^{2k}+\left(y-\frac{1}{2}\right)^{2k}=0\)
\(\Rightarrow\begin{cases}\left(2x-1\right)^{2k}=0\\\left(y-\frac{1}{2}\right)^{2k}=0\end{cases}\)\(\Rightarrow\begin{cases}2x-1=0\\y-\frac{1}{2}=0\end{cases}\)\(\Rightarrow\begin{cases}2x=1\\y=\frac{1}{2}\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}\)
Vậy \(x=y=\frac{1}{2}\)