Giải:
Ta có:
\(\dfrac{x}{2}+\dfrac{x}{4}+\dfrac{x}{2016}=\dfrac{x}{3}+\dfrac{x}{5}+\dfrac{x}{2017}\)
\(\Leftrightarrow\dfrac{x}{2}+\dfrac{x}{4}+\dfrac{x}{2016}-\dfrac{x}{3}-\dfrac{x}{5}-\dfrac{x}{2017}=0\)
\(\Leftrightarrow x\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{2016}-\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{2017}\right)=0\)
Mà \(\dfrac{1}{2}>\dfrac{1}{3};\dfrac{1}{4}>\dfrac{1}{5};\dfrac{1}{2016}>\dfrac{1}{2017}\)
\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{2016}-\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{2017}\right)\) \(\ne0\)
\(\Leftrightarrow x=0\)
\(\dfrac{x}{2}+\dfrac{x}{4}+\dfrac{x}{2016}=\dfrac{x}{3}+\dfrac{x}{4}+\dfrac{x}{2017}\)
\(\Leftrightarrow\dfrac{x}{2}+\dfrac{x}{4}+\dfrac{x}{2016}-\dfrac{x}{3}-\dfrac{x}{4}-\dfrac{x}{2017}=0\)
\(\Leftrightarrow x\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{2016}-\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{2017}\right)=0\)
\(\Leftrightarrow x=0\)
Vậy x = 0