Lời giải:
Ta có:
$x^2-2x+4=(x^2-2x+1)+3=(x-1)^2+3$
Vì $(x-1)^2\geq 0, \forall x\in\mathbb{R}$ nên $x^2-2x+4=(x-1)^2+3\geq 3$
$\Rightarrow \sqrt{x^2-2x+4}\geq \sqrt{3}$
$\Rightarrow D=\sqrt{x^2-2x+4}+1\geq \sqrt{3}+1$
Vậy $D_{\min}=\sqrt{3}+1$ khi $(x-1)^2=0$ hay $D_{\min}$ khi $x=1$