<=>
\(\sqrt{x^2+x+\dfrac{5}{4}}=3+\sqrt{x^2+x+\dfrac{17}{4}}\)
<=>
\(x^2+x+\dfrac{5}{4}=3^2+x^2+x+\dfrac{17}{4}\)
<=>
\(x^2+x+\dfrac{5}{4}-9-x^2-x-\dfrac{17}{4}=0\)
<=>
\(\dfrac{5}{4}-9-\dfrac{17}{4}=-12.khác.0\)
=> pt vô nghiệm
Ta có : \(\sqrt{x^2+x+\dfrac{5}{4}}=\sqrt{\left(x+\dfrac{1}{2}\right)^2+1}\ge1\)(1)
\(\sqrt{x^2+x+\dfrac{17}{4}}=\sqrt{\left(x+\dfrac{1}{2}\right)^2+4}\ge2\) (2)
Từ (1) ; (2) => VT \(\ge3=VP\)
Dấu "=" xảy ra <=> \(x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy tập nghiệm phương trình \(S=\left\{-\dfrac{1}{2}\right\}\)