a)
\(\Rightarrow\left(\frac{305}{2}-\frac{1187}{8}\right):\frac{1}{5}=x:\frac{3}{10}\)
\(\Rightarrow\frac{33}{8}.5=x:\frac{3}{10}\)
\(\Rightarrow x=\frac{33}{8}.5.\frac{3}{10}\)
\(\Rightarrow x=\frac{99}{16}\)
a)
\(\Rightarrow\left(\frac{305}{2}-\frac{1187}{8}\right):\frac{1}{5}=x:\frac{3}{10}\)
\(\Rightarrow\frac{33}{8}.5=x:\frac{3}{10}\)
\(\Rightarrow x=\frac{33}{8}.5.\frac{3}{10}\)
\(\Rightarrow x=\frac{99}{16}\)
cho x,y,z > 0. Cmr: \(\frac{2x}{x^6+y^4}+\frac{2y}{y^6+z^4}+\frac{2z}{z^6+x^4}\le\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\)
1. Ap dụng BĐT Cô-si để tìm GTNN của các biểu thức sau
a. \(y=\frac{x}{2}+\frac{18}{x},x\ge0\)
b.\(y=\frac{x}{2}+\frac{2}{x-1},x\ge1\)
c.\(y=\frac{3x}{2}+\frac{1}{x+1},x\ge-1\)
d. \(y=\frac{x}{3}+\frac{5}{2x-1},x\ge\frac{1}{2}\)
e. y \(=\frac{x}{1-x}+\frac{5}{x},0\le x\le1\)
f. \(y=\frac{x^3+1}{x^2},x\ge0\)
g. \(y=\frac{x^2+4x+4}{x},x\ge0\)
Cm:
Nếu x,y,z >0 thỏa mãn
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)
thì \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
Cho 3 số x,y,z>0tm xyz =1.
CMR :\(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge \frac{x}{y}+\frac{y}{z}+\frac{z}{x} \)
Cho x,y,z là các số dương. Chứng minh rằng:
\(\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+z^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Giair phương trình
\(\begin{cases}x+\frac{yz}{y+z}=\frac{1}{2}\\y+\frac{zx}{z+x}=\frac{1}{3}\\z+\frac{xy}{x+y}=\frac{1}{4}\end{cases}\)
Áp dụng BĐT Cô-si để tìm Max
a. \(y=\left(x+3\right)\left(5-x\right),\left(-3\le x\le5\right)\)
b. \(y=x\left(6-x\right)\left(0\le x\le6\right)\)
c. \(y=\left(x+3\right)\left(5-2x\right)\left(-3\le x\le\frac{5}{2}\right)\)
d. \(y=\left(2x+5\right)\left(5-2x\right)\left(-\frac{5}{2}\le x\le5\right)\)
e. \(y=\left(6x+3\right)\left(5-2x\right)\left(-\frac{1}{2}\le x\le\frac{5}{2}\right)\)
f. \(y=\frac{x}{x^2+2},x\ge0\)
g. \(y=\frac{x^2}{\left(x^2+2\right)^3}\)
cho x , y , z > 0 \(x^2+y^2+z^2=1\)
CMR \(P=\frac{x}{y^2+z^2}+\frac{y}{x^2+z^2}+\frac{z^2}{x^2+y^2}\ge\frac{3\sqrt{3}}{2}\)
Chứng minh rằng
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{9}{x+y+z}\ge\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\)