\(x+1-\left(x+1\right)^2=0\)
\(\Rightarrow\left(x+1\right)\left(1-x-1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\end{matrix}\right.\)
\(x^2+2x+1-y^2-4y-4=0\)
\(\Rightarrow\left(x+1\right)^2-\left(y+2\right)^2=0\)
\(\Rightarrow\left(x+1\right)^2=\left(y+2\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+1=y+2\\x+1=-y-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-y=1\\x+y=-3\end{matrix}\right.\)
a)Ta có:
x + 1 - (x + 1)2 = 0 => ( x + 1) - ( x + 1)( x + 1) = 0
=> ( x + 1) .[ 1 - (x + 1 )] = 0
=> ( x + 1). ( 1 - x - 1) = 0
=> (x + 1 ) . ( 1 - 1 - x) = 0
=> (x + 1 ) .( 0 - x) = 0=> (x + 1 ). (-x)= 0
=> \(\left[{}\begin{matrix}x+1=0\\-x=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\x=0\end{matrix}\right.\)
Vậy \(x\in\left\{-1;0\right\}\)
B) Ta có:
x2 + 2x + 1 - y2 - 4y - 4 = 0
=>( x2 + 2x.1 + 12 )- ( y2 + 2.2.y + 22) = 0
=> (x + 1)2 - ( y + 2)2 = 0
(Áp dụng tính chất: (a + b)2 = a2 + 2ab + b2
Giải tính chất:
Ta có:( a + b )2 = (a + b) ( a + b) = ( a + b) .a + ( a + b ) .b
= aa + ab + ab + bb= a2 + 2ab + b2
Vậy.....)
=>\(\left[{}\begin{matrix}\left(x+1\right)^2=\left(y+2\right)^2=0\\\left(x+1\right)^2=\left(y+2\right)^2\ne0\end{matrix}\right.\)
Xét TH1:(x + 1)2 = ( y + 2)2 = 0
=>\(\left\{{}\begin{matrix}x+1=0\\y+2=0\end{matrix}\right.=>\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
Xét TH2: \(\left(x+1\right)^2=\left(y+2\right)^2\ne0\)
=>\(\left[{}\begin{matrix}x+1=y+2\\x+1=-y-2\end{matrix}\right.=>\left[{}\begin{matrix}x=y+2-1\\x=-y-2-1\end{matrix}\right.=>\left[{}\begin{matrix}x=y+1\\x=-y-3\end{matrix}\right.\)
Vậy\(\left[{}\begin{matrix}x=-1;y=-2\\x=y+1\\x=-y-3\end{matrix}\right.\)
\(x+1-\left(x+1\right)^2=0\)
\(\Rightarrow1\left(x+1\right)-\left(x+1\right)\left(x+1\right)=0\)
\(\Rightarrow\left(1-x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-x=0\Rightarrow x=0\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)
\(x^2+2x+1-y^2-4y-4=0\)
\(\Rightarrow\left(x+1\right)^2-\left(y+2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=y+2\\x+1=-y-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=y+1\\x=-y-3\end{matrix}\right.\)