(\(x\)-\(\dfrac{2}{3}\))2\(=\)\(\dfrac{5}{6}\)
\(x\)-\(\dfrac{4}{9}\)\(=\)\(\dfrac{5}{6}\)
\(x\)\(=\)\(\dfrac{5}{6}\)+\(\dfrac{4}{9}\)
\(x\)\(=\)\(\dfrac{23}{18}\)
\(\left(x-\dfrac{2}{3}\right)^2=\dfrac{5}{6}\)
\(< =>\left(x-\dfrac{2}{3}\right)^2-\dfrac{5}{6}=0\)
<=>\(\left(x-\dfrac{2}{3}\right)^2-\left(\dfrac{\sqrt{5}}{\sqrt{6}}\right)^2=0\)
\(< =>\left(x-\dfrac{2}{3}+\dfrac{\sqrt{5}}{\sqrt{6}}\right)\left(x-\dfrac{2}{3}-\dfrac{\sqrt{5}}{\sqrt{6}}\right)=0\)
=>\(\left[{}\begin{matrix}x-\dfrac{2}{3}+\dfrac{\sqrt{5}}{\sqrt{6}}=0\\x-\dfrac{2}{3}-\dfrac{\sqrt{5}}{\sqrt{6}}=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{2}{3}-\dfrac{\sqrt{5}}{\sqrt{6}}\\x=\dfrac{2}{3}+\dfrac{\sqrt{5}}{\sqrt{6}}\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=\dfrac{4-\sqrt{30}}{6}\\x=\dfrac{4+\sqrt{30}}{6}\end{matrix}\right.\)
VẬy..