Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quỳnh Trang

Tìm x, biết rằng:

a) \(\left(x-\dfrac{3}{4}\right)^2=0\)

b) \(\left(x-3\right)^2=1\)

c) \(\left(2x+1\right)^3=-8\)

d) \(\left(x-\dfrac{1}{4}\right)^2=\dfrac{1}{4}\)

Phạm Ngân Hà
29 tháng 7 2017 lúc 21:43

a) \(\left(x-\dfrac{3}{4}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{3}{4}=0\)

\(\Leftrightarrow x=0+\dfrac{3}{4}\)

\(\Leftrightarrow x=\dfrac{3}{4}\)

Nguyễn Huy Tú
29 tháng 7 2017 lúc 21:44

a, \(\left(x-\dfrac{3}{4}\right)^2=0\Rightarrow x=\dfrac{3}{4}\)

Vậy...

b, \(\left(x-3\right)^2=1\Rightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

Vậy x = 4 hoặc x = 2

c, \(\left(2x+1\right)^3=-8\)

\(\Rightarrow2x+1=-3\)

\(\Rightarrow x=-2\)

Vậy x = -2

d, \(\left(x-\dfrac{1}{4}\right)^2=\dfrac{1}{4}\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{4}=\dfrac{1}{2}\\x-\dfrac{1}{4}=\dfrac{-1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{-1}{4}\end{matrix}\right.\)

Vậy...

Phạm Ngân Hà
29 tháng 7 2017 lúc 21:45

c) \(\left(2x+1\right)^3=-8\)

\(\Leftrightarrow\left(2x+1\right)^3=\left(-2\right)^3\)

\(\Leftrightarrow2x+1=-2\)

\(\Leftrightarrow2x=\left(-2\right)-1\)

\(\Leftrightarrow2x=-3\)

\(\Leftrightarrow x=\dfrac{-3}{2}\)

Phạm Ngân Hà
29 tháng 7 2017 lúc 21:48

d) \(\left(x-\dfrac{1}{4}\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{4}\right)^2=\left(\dfrac{1}{2}\right)^2\\\left(x-\dfrac{1}{4}\right)^2=\left(-\dfrac{1}{2}\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{4}=\dfrac{1}{2}\\x-\dfrac{1}{4}=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}+\dfrac{1}{4}\\x=\left(-\dfrac{1}{2}\right)+\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

Phạm Ngân Hà
29 tháng 7 2017 lúc 21:44

b) \(\left(x-3\right)^2=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)