Áp dụng bđt |a|+|b|+|c|+|d| \(\ge\)|a+b+c+d| ta có:
\(\left|x-1\right|+\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)\(=\left|x-1\right|+\left|x-3\right|+\left|5-x\right|+\left|7-x\right|\)\(\ge\left|x-1+x-3+5-x+7-x\right|=\left|8\right|=8\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-1\ge0\\x-3\ge0\\x-5\le0\\x-7\le0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\)\(\Leftrightarrow3\le x\le5\)
Mà x nguyên nên \(x\in\left\{3;4;5\right\}\)
Vậy \(x\in\left\{3;4;5\right\}\)