a, (x2 + 5)(x2 - 25) = 0
\(\Rightarrow\left[\begin{matrix}x^2+5=0\\x^2+25=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x^2=-5\left(loại\right)\\x^2=-25\left(loại\right)\end{matrix}\right.\)
Vậy \(x=\varnothing\)
b, (x2 - 5)(x2 - 25) < 0
<=> x2 - 5 và x2 - 25 trái dấu
Ta thấy x2 - 5 > x2 - 25 nên \(\left\{\begin{matrix}x^2-5>0\\x^2-25< 0\end{matrix}\right.\) <=> x < 5
c, (x - 2)(x + 1) = 0
\(\Rightarrow\left[\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{2;-1\right\}\)