a.
\(\sqrt{x^2-4}=\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)}.\sqrt{\left(x+2\right)}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy x=2 hoặc x=-1
b)
\(\Leftrightarrow\sqrt{x-1}+5\sqrt{4.\left(x-1\right)}-\sqrt{9.\left(x-1\right)}< 4\)
\(\Leftrightarrow\sqrt{x-1}+10\sqrt{x-1}-3\sqrt{x-1}< 4\)
\(\Leftrightarrow\left(1+10-3\right)\sqrt{x-1}< 4\)
\(\Leftrightarrow8\sqrt{x-1}< 4\)
\(\Leftrightarrow\sqrt{x-1}< \frac{1}{2}\)
\(\Leftrightarrow x-1< \frac{1}{4}\)
\(\Leftrightarrow x< \frac{5}{4}\)
Vậy...