Lời giải:
a)
PT \(\Leftrightarrow \sqrt{(3x-1)^2}=\sqrt{(x+4)^2}\)
\(\Leftrightarrow |3x-1|=|x+4|\)
\(\Rightarrow \left[\begin{matrix} 3x-1=x+4\\ 3x-1=-(x+4)\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2.5\\ x=-0.75\end{matrix}\right.\)
Vậy........
b) ĐK: $x\geq 1$
PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}+\sqrt{(x-1)-6\sqrt{x-1}+9}=5\)
\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}+\sqrt{(\sqrt{x-1}-3)^2}=5\)
\(\Leftrightarrow |\sqrt{x-1}+2|+|\sqrt{x-1}-3|=5\)
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
\(|\sqrt{x-1}+2|+|\sqrt{x-1}-3|=|\sqrt{x-1}+2|+|3-\sqrt{x-1}|\geq |\sqrt{x-1}+2+3-\sqrt{x-1}|=5\)
Dấu "=" xảy ra khi \((\sqrt{x-1}+2)(3-\sqrt{x-1})\geq 0\)
\(\Leftrightarrow -2\leq \sqrt{x-1}\leq 3\)
\(\Leftrightarrow 1\leq x\leq 10\)
Vậy.........