b/
\(\dfrac{x+y-6}{z}=\dfrac{x+z+4}{y}=\dfrac{y+z+2}{x}=\dfrac{6}{x+y+z}\)
Đặt 0\(k=\dfrac{x+y-6}{z}=\dfrac{x+z+4}{y}=\dfrac{y+z+2}{x}=\dfrac{6}{x+y+z}\)
\(\Rightarrow k=\dfrac{\left(x+y-6\right)+\left(x+z+4\right)+\left(y+z+2\right)}{z+y+x}\)
\(\Rightarrow k=\dfrac{2x+2y+2z-6+4+2}{z+y+x}\)
\(\Rightarrow k=\dfrac{2\left(x+y+z\right)}{z+y+x}\)
\(\Rightarrow k=2\) (*)
Từ (*)
\(\Rightarrow\dfrac{x+y-6}{z}=2\Rightarrow x+y-6=2z\)
\(\Rightarrow\dfrac{x+z+4}{y}=2\Rightarrow x+z+4=2y\)
\(\Rightarrow\dfrac{y+z+2}{x}=2\Rightarrow y+z+2=2x\)
\(\Rightarrow\dfrac{6}{x+y+z}=2\Rightarrow\dfrac{6}{2}=x+y+z\)
\(\Rightarrow x+y+z=3\)
Thay vào biểu thức x+y+z = 3
\(\Rightarrow\dfrac{3-z-6}{z}=\dfrac{3-y+4}{y}=\dfrac{3-x+2}{x}=2\)
\(\Rightarrow\dfrac{-3-z}{z}=\dfrac{7-y}{y}=\dfrac{5-x}{x}=2\)
\(\text{Ta có :}\dfrac{-3-z}{z}=2\)
\(\Rightarrow-3-z=2z\)
\(\Rightarrow-3=3z\)
\(\Rightarrow z=-1\)
*) \(\dfrac{7-y}{y}=2\)
\(\Rightarrow7-y=2y\)
\(\Rightarrow7=3y\)
\(\Rightarrow y=\dfrac{7}{3}\)
*)\(\dfrac{5-x}{x}=2\)
\(\Rightarrow5-x=2x\)
\(\Rightarrow5=3x\)
\(\Rightarrow x=\dfrac{5}{3}\)
Vậy x = 5/3 ; y = 7/3 ; z = -1