a, \(\left|2x+1\right|=5\Rightarrow2x+1\in\left\{5;-5\right\}\)
+) Nếu :\(2x+1=5\Rightarrow2x=4\Rightarrow x=4\div2=2\)
+) Nếu : \(2x+1=-5\Rightarrow2x=-6\Rightarrow x=-6\div2=-3\)
Vậy \(x\in\left\{2;-3\right\}\)
b, \(\left|x-4\right|=\left|2-x\right|\)
\(\Rightarrow\left[\begin{matrix}x-4=2-x\\x-4=-\left(2-x\right)\end{matrix}\right.\)
+) Nếu : x - 4 = 2 - x
\(\Rightarrow x+x=2+4\Rightarrow2x=6\Rightarrow x=3\)
+) Nếu : x - 4 = - ( 2 - x )
\(\Rightarrow x-4=-2+x\Rightarrow x-x=-2+4\Rightarrow0=2\) ( loại )
Vậy x = 3 thỏa mãn đề bài
c, \(\left|x-5\right|=2-x\Rightarrow\left|x-5\right|+x=2\)
+) Nếu : \(x< 5\Rightarrow x-5< 5-5\Rightarrow x-5< 0\Rightarrow\left|x-5\right|=-x+5\)
Thay vào đề , ta có :
\(-x+5+x=2\Rightarrow-x+x+5=2\Rightarrow5=2\) ( loại )
+) Nếu : \(x\ge5\Rightarrow x-5\ge5-5\Rightarrow x-5\ge0\Rightarrow\left|x-5\right|=x-5\)
Thay vào đề , ta có :
\(\left(x-5\right)-x=2\Rightarrow x-5-x=2\)
\(\Rightarrow x-x-5=2\Rightarrow-5=2\) ( loại )
Vậy \(x\in\varnothing\)