a: \(\Leftrightarrow\left|x-3\right|=12-5x-8=-5x+4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{4}{5}\\\left(-5x+4\right)^2=\left(x-3\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{4}{5}\\\left(5x-4-x+3\right)\left(5x-4+x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{4}{5}\\\left(4x-1\right)\left(6x-7\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{4}\)
b: \(\left(\sqrt{x}+3\right)^{10}=1024\cdot125^2\cdot25^2\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)^{10}=2^{10}\cdot5^6\cdot5^4=10^{10}\)
\(\Leftrightarrow\sqrt{x}+3=10\)
hay x=49
c: \(\dfrac{3-0.2x}{5}=\dfrac{7}{15}+1.4x\)
\(\Leftrightarrow\dfrac{9-0.6x}{15}=\dfrac{7}{15}+\dfrac{21x}{15}\)
=>21x+7=9-0,6x
=>21,6x=-2
hay x=-5/54
d: \(\Leftrightarrow\left(\dfrac{4}{3}\right)^{3x}=\dfrac{5^9\cdot7^9\left(4\cdot7-5^2\right)}{5^9\cdot7^9\cdot4}\)
\(\Leftrightarrow\left(\dfrac{4}{3}\right)^{3x}=\dfrac{28-25}{4}=\dfrac{3}{4}\)
=>3x=-1
hay x=-1/3