đặt: \(\left\{{}\begin{matrix}2^x=t\\t>0\end{matrix}\right.\)
\(t^2-12t+32=0\Leftrightarrow t^2-2.6t+36=4\)
\(\left(t-6\right)^2=2^2\Rightarrow\left[{}\begin{matrix}t=8\\t=4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Ta có : 4x = (2x)2 .
=> 4x - 12.2x + 32 = 0 <=> (2x)2 - 12.2x + 36 - 4 = 0
<=> (2x - 6 )2 - 4 = 0
<=> (2x - 6 - 2 ).( 2x - 6 + 2 ) = 0
<=> ( 2x - 8 ).( 2x - 4 ) = 0 .
=> \(\left[{}\begin{matrix}2^x=8\\2^x=4\end{matrix}\right.\) => \(\left[{}\begin{matrix}2^x=2^3\\2^x=2^2\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)