1)
Ta có: \(8⋮x\)
\(\Rightarrow x\inƯ\left(8\right)\)
\(\Rightarrow x\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
mà x>0 nên \(x\in\left\{1;2;4;8\right\}\)
Vậy: \(x\in\left\{1;2;4;8\right\}\)
2)
Ta có: \(12⋮x\)
\(\Rightarrow x\inƯ\left(12\right)\)
\(\Rightarrow x\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
mà x<0 nên \(x\in\left\{-1;-2;-3;-4;-6;-12\right\}\)
Vậy: \(x\in\left\{-1;-2;-3;-4;-6;-12\right\}\)
3)
Ta có: \(-8⋮x\) và \(12⋮x\)
nên \(x\inƯC\left(-8;12\right)\)
mà \(Ư\left(-8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
và \(Ư\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
nên \(x\in\left\{1;-1;2;-2;4;-4\right\}\)
Vậy: \(x\in\left\{1;-1;2;-2;4;-4\right\}\)